Local Torelli theorem for non-singular complete intersections

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A mirror theorem for toric complete intersections

We prove a generalized mirror conjecture for non-negative complete intersections in symplectic toric manifolds. Namely, we express solutions of the PDE system describing quantum cohomology of such a manifold in terms of suitable hypergeometric functions. 0. Introduction. Let X denote a non-singular compact Kähler toric variety with the Picard number k. The variety X can be obtained by the sympl...

متن کامل

The Avrunin-scott Theorem for Quantum Complete Intersections

We prove the Avrunin-Scott theorem for quantum complete intersections; the rank variety of a module is isomorphic to its support variety.

متن کامل

Which Schubert varieties are local complete intersections?

We characterize by pattern avoidance the Schubert varieties for GLn which are local complete intersections (lci). For those Schubert varieties which are local complete intersections, we give an explicit minimal set of equations cutting out their neighborhoods at the identity. Although the statement of our characterization only requires ordinary pattern avoidance, showing that the Schubert varie...

متن کامل

Infinitesimal Torelli Theorem for Surfaces with C

In the present paper, we will prove the infinitesimal Torelli theorem for general minimal complex surfaces X’s with c1 = 3, χ(O) = 2, and Tors(X) ≃ Z/3, where c1, χ(O), and Tors(X) are the first Chern class, the Euler characteristic of the structure sheaf, and the torsion part of the Picard group of X, respectively. We will also show that all surfaces with the invariants as above are deformatio...

متن کامل

Frobenius Powers of Non-complete Intersections

The purpose of this paper is to address a number of issues raised by Avramov and Miller in a recent paper [1]. Let (R,m, k) be a Noetherian local ring of characteristic p > 0 with residue field k, and let φ : R → R be the the Frobenius homomorphism defined by φ(a) = a. For r ≥ 1, we denote by φrR the R-module structure on R via φ. That is, for a ∈ R and b ∈ φ r R, a · b = a r b. When R is a reg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Japanese journal of mathematics. New series

سال: 1976

ISSN: 0289-2316,1861-3624

DOI: 10.4099/math1924.2.411